
Alex Aiken, Stanford 1

Using Learning Techniques
in

Invariant Inference

Alex Aiken
Aditya Nori

Rahul Sharma
Saurabh Gupta

Bharath Hariharan

Invariant Inference

•  An old problem

•  A different approach with two ideas:
1.  Separate invariant inference from the rest of the

verification problem

Alex Aiken, Stanford 2

Why?

for (B)
 {

 … code …

}

Alex Aiken, Stanford 3

Pre
I

Post

Pre)I

I Æ B
{ code }
I

I Æ:B)
Post

Invariant Inference

•  An old problem

•  A different approach with two ideas:
1.  Separate invariant inference from the rest of the

verification problem

2.  Guess the invariant from executions

Alex Aiken, Stanford 4

Why?

•  Complementary to static analysis
–  underapproximations
- “see through” hard analysis problems

•  functionality may be simpler than the code

•  Possible to generate many, many tests

Alex Aiken, Stanford 5

Nothing New Under the Sun

•  Sounds like DAIKON?
–  Yes!

•  Hypothesize (many) invariants
–  Run the program
–  Discard candidate invariants that are falsified
–  Attempt to verify the remaining candidates

Alex Aiken, Stanford 6

A Simple Program

•  Instrument loop head

•  Collect state of program
variables on each
iteration

Alex Aiken, Stanford 7

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

A DAIKON-Like Approach

•  Hypothesize
–  s = y
–  s = 2y

•  Data

Alex Aiken, Stanford 8

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

s y
0 0

A DAIKON-Like Approach

•  Hypothesize
–  s = y
–  s = 2y

•  Data

Alex Aiken, Stanford 9

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

s y
0 0
1 1

A DAIKON-Like Approach

•  Hypothesize
–  s = y
–  s = 2y

•  Data

Alex Aiken, Stanford 10

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

s y
0 0
1 1
2 2
3 3

Another Approach

•  Data

Alex Aiken, Stanford 11

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

s y
0 0
1 1
2 2
3 3

Arbitrary Linear Invariant

•  Data

Alex Aiken, Stanford 12

as + by = 0
s y
0 0
1 1
2 2
3 3

Observation

Alex Aiken, Stanford 13

as + by = 0

s y
0 0
1 1
2 2
3 3

w
a
b

0
0

Observation

Alex Aiken, Stanford 14

as + by = 0

s y
0 0
1 1
2 2
3 3

w
a
b

0
0

{ w | Mw = 0 }

Observation

Alex Aiken, Stanford 15

as + by = 0

s y
0 0
1 1
2 2
3 3

w
a
b

0
0

NullSpace(M)

Linear Invariants

•  Construct matrix M of observations of all
program variables

•  Compute NullSpace(M)

•  All invariants are in the null space

Alex Aiken, Stanford 16

Spurious “Invariants”

•  All invariants are in the null space
–  But not all vectors in the null space are invariants

•  Consider the matrix

•  Need a check phase
–  Verify the candidate is in fact an invariant

Alex Aiken, Stanford 17

s y
0 0

An Algorithm

•  Check candidate invariant
–  If an invariant, done

–  If not an invariant, get counterexample
•  A reachable assignment of program variables falsifying

the candidate

•  Add new row to matrix
–  And repeat

Alex Aiken, Stanford 18

Termination

•  How many times can the solve & verify loop
repeat?

•  Each counterexample is linearly independent
of previous entries in the matrix

•  So at most N iterations
–  Where N is the number of columns
–  Upper bound on steps to reach a full rank matrix

Alex Aiken, Stanford 19

Summary

•  Superset of all linear invariants can be
obtained by a standard matrix calculation

•  Counter-example driven improvements to
eliminate all but the true invariants
–  Guaranteed to terminate

Alex Aiken, Stanford 20

What About Non-Linear Invariants?

Alex Aiken, Stanford 21

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + y;

 y := y + 1;

}

Idea

•  Collect data as before

•  But add more columns to the matrix
–  For derived quantities
–  For example, y2 and s2

•  How to limit the number of columns?
–  All monomials up to a chosen degree d

[Nguyen, Kapur, Weimer, Forrest 2012]
Alex Aiken, Stanford 22

What About Non-Linear Invariants?

Alex Aiken, Stanford 23

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + y;

 y := y + 1;

}

1 s y s2 y2 sy

1 0 0 0 0 0

1 1 1 1 1 1

1 3 2 9 4 6

1 6 3 36 9 18

1 10 4 100 16 40

Solve for the Null Space

Alex Aiken, Stanford 24

a + bs + cy+ ds2 + ey2 + fsy = 0

1 s y s2 y2 sy

1 0 0 0 0 0

1 1 1 1 1 1

1 3 2 9 4 6

1 6 3 36 9 18

1 10 4 100 16 40

w
a
b
c
d
e
f

0
0
0
0
0
0

-2s + y + y2 = 0 Candidate invariant:

Comments

•  Same issues as before
–  Must check candidate is implied by precondition, is

inductive, and implies the postcondition on
termination

–  Termination of invariant inference guaranteed if
the verifier can generate counterexamples

•  Experience: Solvers do well as checkers!

Alex Aiken, Stanford 25

Experiments

Alex Aiken, Stanford 26

Summary to This Point

•  Sound and complete algorithm for algebraic
invariants
–  Up to a given degree

•  Guess and Check
–  Hard part is inference done by matrix solve
–  Check part done by standard SMT solver
–  Much simpler and faster than previous approaches

Alex Aiken, Stanford 27

What About Disjunctive Invariants?

•  Disjunctions are expensive

•  Existing techniques severely restrict
disjunctions
–  E.g., to a template

Alex Aiken, Stanford 28

Good States

Alex Aiken, Stanford 29

+
+

+

+

+

+

+

+

+

Separating Good States and Bad States

Alex Aiken, Stanford 30

+
+

+

+

+

+

+

+

+

-

-

-

-

-

- -

-

Separating Good States and Bad States

Alex Aiken, Stanford 31

+
+

+

+

+

+

+

+

+

-

-

-

-

-

- -

-

-

More Precisely . . .

•  A state is a valuation of program variables

•  Correct programs have good and bad states
–  All reachable states are good

•  Because we assume the program is correct
–  Assertions define the bad states

•  States that would result in the assertion being violated

•  An invariant is a separator
–  Of the good states from the bad states

Alex Aiken, Stanford 32

From Verification to Machine Learning

•  From data we want to learn a separator of the
good and bad states

•  This is a machine learning problem

Alex Aiken, Stanford 33

Goals

•  Produce boolean combination of linear
inequalities
–  Without templates

•  Predictive
–  Generalizes well from small test suite

•  Efficient
–  Hard, but more on this later

Alex Aiken, Stanford 34

PAC Learning

•  Given some positive and negative examples
–  Learn separator

•  Separator is Probably Approximately Correct
–  With confidence 1 – x the accuracy is 1 – e
–  The number of examples is m = poly(1/x,1/e,d)

Alex Aiken, Stanford 35

Example for Good and Bad States

Alex Aiken, Stanford 36

x	
 :=	
 y;	

while(x	
 !=	
 0)	
 do	

	
 	
 x	
 :=	
 x-­‐1;	

	
 	
 y	
 :=	
 y-­‐1;	

assert	
 y	
 =	
 0	

Invariants

•  Arbitrary boolean combination of
–  Equalities and
–  Inequalities
–  Over program quantities

•  Note “program quantities” includes variables
and induced quantities (like x2)

Alex Aiken, Stanford 37

First Part

•  Run tests to get good states

•  Run previous algorithm to infer equalities E

•  Sample bad states
–  Consider while	
 B	
 do	
 S;	
 assert	
 Q	

–  Sample from :B	
 Æ :Q	
 Æ E	

–  Sample from :B	
 Æ WP(assume(B);S,:Q)	
 Æ E

Alex Aiken, Stanford 38

Idea

•  Good and bad states are points in d-
dimensional space

•  Inequalities are planes in this space

•  Must pick a set of planes that separate every
good from every bad state

Alex Aiken, Stanford 39

Picture

Alex Aiken, Stanford 40

•  How many planes
are required?
–  At most md

–  m is # points
–  d is dimensionality

•  Puts every point in
its own cell

Theorem

•  md planes (inequalities) would be awful

•  PAC learning can find a subset of the planes
that separate the positive and negative points
–  With O(s log m) planes
–  Where s is the size of the minimal separator
–  And m is roughly ds log ds …(other factors) …
–  In time md+2

Alex Aiken, Stanford 41

Simple Example

Alex Aiken, Stanford 42

Disjunction Example

Alex Aiken, Stanford 43

Algorithm

•  Consider a bipartite graph
–  Connects every good and bad state

•  Repeat
–  Pick a plane cutting the maximum number of

remaining edges

Alex Aiken, Stanford 44

Analysis Ingredients

•  md possible planes

•  s = m2 are a separator

•  The greedy strategy in time md+2 finds s log m
planes

Alex Aiken, Stanford 45

Comments

•  The fact that there is only a log factor
increase in number of planes over the minimum
is important
–  Avoids overfitting

•  In practice, the number of planes is small

Alex Aiken, Stanford 46

Efficiency

•  The general algorithm is too inefficient

•  Impose some assumptions common to
verification techniques
–  Reduce set of candidate planes to polynomial

Alex Aiken, Stanford 47

Predicate Abstraction

•  The invariant is an (arbitrary boolean
combination) of predicates in T

•  Can find a PAC separator in time O(m2|T|)
–  Even though the complexity of finding an invariant

is NPNP complete

Alex Aiken, Stanford 48

Abstract Interpretation

•  Efficient algorithms for restricted abstract
domains
–  Boxes O(m3d)
–  Octagons O(m3d2)

Alex Aiken, Stanford 49

Boxes

Alex Aiken, Stanford 50

Boxes

Alex Aiken, Stanford 51

Check Phase

•  Use Boogie

•  For counter-examples
–  Satisfies precondition, add as positive example
–  Violates assertion, add as negative example
–  If can’t label, add as a constraint

•  Increases the guess size

Alex Aiken, Stanford 52

Experiments

Alex Aiken, Stanford 53

Application: Equality Checking

•  Have extended these techniques to checking
equality of arbitrary loops
–  Guess and verify a simulation relation
–  Mine equalities between the two loops as a guide

•  Able to prove code generated by gcc –O2
equivalent to CompCert

Alex Aiken, Stanford 54

Discussion

•  Sound invariant inference based on PAC
learning

•  Machine learning/data mining techniques to
–  Handle disjunctions
–  Non-linearities

•  Connects complexity of learning and
complexity of verification

Alex Aiken, Stanford 55

Discussion

•  Like predecessors, focus on numerical
invariants
–  Many other interesting aspects of programs not

covered
–  Data structures, arrays, concurrency, higher-order

functions …

•  This is where we are headed …

Alex Aiken, Stanford 56

Thanks!

Questions?

Alex Aiken, Stanford 57

